Optimum Access Analysis of Collaborative Spectrum Sensing in Cognitive Radio Network using MRC
نویسندگان
چکیده
The performance of cognitive radio network mainly depends on the finest sensing of the presence or absence of Primary User (PU). The throughput of a Secondary User (SU) can be reduced because of the false detection of PU which causes an SU from its transmission opportunity. The factorization of the probability of correct decision is a really hard job when the special false alarm is incorporated into it. Previous works focus on collaborative sensing on the normal environment. In this paper, we have proposed a collaborative sensing method in Cognitive radio network for optimal access of PU licensed band by SU. It is shown performance analysis of energy detection through different cognitive users and conducts a clear comparison between local and collaborative sensing.In this paper, the maximal ratio combining diversity technique with energy detection has been employed to reduce the false alarm probability in the collaborative environment. The simulation result showssignificant reduction of the probability of misdetection with increasing in the number of collaborative users.We also analyze that MRC scheme exhibits the best detection performance in collaborative environment. Keywords—Fusion center; Local energy detection; Maximum Ratio Combining; Spectrum Sensing;Receiver Operating Characteristics
منابع مشابه
Secure Collaborative Spectrum Sensing in the Presence of Primary User Emulation Attack in Cognitive Radio Networks
Collaborative Spectrum Sensing (CSS) is an effective approach to improve the detection performance in Cognitive Radio (CR) networks. Inherent characteristics of the CR have imposed some additional security threats to the networks. One of the common threats is Primary User Emulation Attack (PUEA). In PUEA, some malicious users try to imitate primary signal characteristics and defraud the CR user...
متن کاملComparative Study of Bayesian and Energy Detection Including MRC Under Fading Environment in Collaborative Cognitive Radio Network
The most important component of Cognitive Radio Network (CRN) is to sense the underutilised spectrum efficiently in fading environment for incorporating the increasing demand of wireless applications. The result of spectrum sensing can be affected by incorrect detection of the existence of Primary User (PU). In this paper, we have considered Collaborative spectrum sensing to maximise the spectr...
متن کاملSpectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation
Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing accuracy. However, in a realistic scenario, the trustworthy of CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack. In an SSDF attack, some malicious CR users deli...
متن کاملAttack-Aware Cooperative Spectrum Sensing in Cognitive Radio Networks under Byzantine Attack
Cooperative Spectrum Sensing (CSS) is an effective approach to overcome the impact of multi-path fading and shadowing issues. The reliability of CSS can be severely degraded under Byzantine attack, which may be caused by either malfunctioning sensing terminals or malicious nodes. Almost, the previous studies have not analyzed and considered the attack in their models. The present study introduc...
متن کاملCollaborative Spectrum Sensing for Cognitive Radio: Diversity Combining Approach
In this paper it is shown that cyclostationary spectrum sensing for Cognitive Radio networks, applying multiple cyclic frequencies for single user detection can be interpreted (with some assumptions) in terms of optimal incoherent diversity addition for “virtual diversity branches” or SIMO radar. This approach allows proposing, by analogy to diversity combining, suboptimal algorithms which can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016